Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Protein Sci ; 32(8): e4702, 2023 08.
Article En | MEDLINE | ID: mdl-37312580

Cellobiose dehydrogenase (CDH) is a bioelectrocatalyst that enables direct electron transfer (DET) in biosensors and biofuel cells. The application of this bidomain hemoflavoenzyme for physiological glucose measurements is limited by its acidic pH optimum and slow interdomain electron transfer (IET) at pH 7.5. The reason for this rate-limiting electron transfer step is electrostatic repulsion at the interface between the catalytic dehydrogenase domain and the electron mediating cytochrome domain (CYT). We applied rational interface engineering to accelerate the IET for the pH prevailing in blood or interstitial fluid. Phylogenetic and structural analyses guided the design of 17 variants in which acidic amino acids were mutated at the CYT domain. Five mutations (G71K, D160K, Q174K, D177K, M180K) increased the pH optimum and IET rate. Structure-based analysis of the variants suggested two mechanisms explaining the improvements: electrostatic steering and stabilization of the closed state by hydrogen bonding. Combining the mutations into six combinatorial variants with up to five mutations shifted the pH optimum from 4.5 to 7.0 and increased the IET at pH 7.5 over 12-fold from 0.1 to 1.24 s-1 . While the mutants sustained a high enzymatic activity and even surpassed the IET of the wild-type enzyme, the accumulated positive charges on the CYT domain decreased DET, highlighting the importance of CYT for IET and DET. This study shows that interface engineering is an effective strategy to shift the pH optimum and improve the IET of CDH, but future work needs to maintain the DET of the CYT domain for bioelectronic applications.


Carbohydrate Dehydrogenases , Electrons , Phylogeny , Carbohydrate Dehydrogenases/genetics , Carbohydrate Dehydrogenases/chemistry , Cytochromes/metabolism , Electron Transport/physiology
2.
ACS Sens ; 8(4): 1639-1647, 2023 04 28.
Article En | MEDLINE | ID: mdl-36967522

Microneedle lactate sensors may be used to continuously measure lactate concentration in the interstitial fluid in a minimally invasive and pain-free manner. First- and second-generation enzymatic sensors produce a redox-active product that is electrochemically sensed at the electrode surface. Direct electron transfer enzymes produce electrons directly as the product of enzymatic action; in this study, a direct electron transfer enzyme specific to lactate has been immobilized onto a microneedle surface to create lactate-sensing devices that function at low applied voltages (0.2 V). These devices have been validated in a small study of human volunteers; lactate concentrations were raised and lowered through physical exercise and subsequent rest. Lactazyme microneedle devices show good agreement with concurrently obtained and analyzed serum lactate levels.


Electrons , Lactic Acid , Humans , Electrodes , Electron Transport , Research Subjects
3.
ACS Sustain Chem Eng ; 9(20): 7086-7100, 2021 May 24.
Article En | MEDLINE | ID: mdl-34306835

Cellobiose dehydrogenase (CDH) is an attractive oxidoreductase for bioelectrochemical applications. Its two-domain structure allows the flavoheme enzyme to establish direct electron transfer to biosensor and biofuel cell electrodes. Yet, the application of CDH in these devices is impeded by its limited stability under turnover conditions. In this work, we aimed to improve the turnover stability of CDH by semirational, high-throughput enzyme engineering. We screened 13 736 colonies in a 96-well plate setup for improved turnover stability and selected 11 improved variants. Measures were taken to increase the reproducibility and robustness of the screening setup, and the statistical evaluation demonstrates the validity of the procedure. The selected CDH variants were expressed in shaking flasks and characterized in detail by biochemical and electrochemical methods. Two mechanisms contributing to turnover stability were found: (i) replacement of methionine side chains prone to oxidative damage and (ii) the reduction of oxygen reactivity achieved by an improved balance of the individual reaction rates in the two CDH domains. The engineered CDH variants hold promise for the application in continuous biosensors or biofuel cells, while the deduced mechanistic insights serve as a basis for future enzyme engineering approaches addressing the turnover stability of oxidoreductases in general.

4.
ACS Catal ; 11(2): 517-532, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33489432

The natural function of cellobiose dehydrogenase (CDH) to donate electrons from its catalytic flavodehydrogenase (DH) domain via its cytochrome (CYT) domain to lytic polysaccharide monooxygenase (LPMO) is an example of a highly efficient extracellular electron transfer chain. To investigate the function of the CYT domain movement in the two occurring electron transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and NcCDHIIB) and five chimeric CDH enzymes created by domain swapping were studied in combination with the fungus' own LPMOs (NcLPMO9C and NcLPMO9F). Kinetic and electrochemical methods and hydrogen/deuterium exchange mass spectrometry were used to study the domain movement, interaction, and electron transfer kinetics. Molecular docking provided insights into the protein-protein interface, the orientation of domains, and binding energies. We find that the first, interdomain electron transfer step from the catalytic site in the DH domain to the CYT domain depends on steric and electrostatic interface complementarity and the length of the protein linker between both domains but not on the redox potential difference between the FAD and heme b cofactors. After CYT reduction, a conformational change of CDH from its closed state to an open state allows the second, interprotein electron transfer (IPET) step from CYT to LPMO to occur by direct interaction of the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor the open state and achieve higher IPET rates by exposing the heme b cofactor to LPMO. The IPET, which is influenced by interface complementarity and the heme b redox potential, is very efficient with bimolecular rates between 2.9 × 105 and 1.1 × 106 M-1 s-1.

5.
Biochim Biophys Acta Gen Subj ; 1861(2): 157-167, 2017 Feb.
Article En | MEDLINE | ID: mdl-27851982

BACKGROUND: Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. METHODS: To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. RESULTS: HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. CONCLUSIONS: Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. GENERAL SIGNIFICANCE: The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells.


Carbohydrate Dehydrogenases/metabolism , Cellobiose/metabolism , Electron Transport/physiology , Amino Acid Sequence , Cytochromes/metabolism , Deuterium/metabolism , Electrons , Flavins/metabolism , Fungal Proteins/metabolism , Fungi/metabolism , Glycosylation , Hydrogen/metabolism , Hydrogen-Ion Concentration , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Protein Domains , Proteolysis , Static Electricity
6.
Proc Natl Acad Sci U S A ; 113(21): 5922-7, 2016 May 24.
Article En | MEDLINE | ID: mdl-27152023

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds using molecular oxygen and an external electron donor. We have used NMR and isothermal titration calorimetry (ITC) to study the interactions of a broad-specificity fungal LPMO, NcLPMO9C, with various substrates and with cellobiose dehydrogenase (CDH), a known natural supplier of electrons. The NMR studies revealed interactions with cellohexaose that center around the copper site. NMR studies with xyloglucans, i.e., branched ß-glucans, showed an extended binding surface compared with cellohexaose, whereas ITC experiments showed slightly higher affinity and a different thermodynamic signature of binding. The ITC data also showed that although the copper ion alone hardly contributes to affinity, substrate binding is enhanced for metal-loaded enzymes that are supplied with cyanide, a mimic of O2 (-) Studies with CDH and its isolated heme b cytochrome domain unambiguously showed that the cytochrome domain of CDH interacts with the copper site of the LPMO and that substrate binding precludes interaction with CDH. Apart from providing insights into enzyme-substrate interactions in LPMOs, the present observations shed new light on possible mechanisms for electron supply during LPMO action.


Carbohydrate Dehydrogenases/chemistry , Fungal Proteins/chemistry , Mixed Function Oxygenases/chemistry , Neurospora crassa/enzymology , Binding Sites , Carbohydrate Dehydrogenases/genetics , Copper/chemistry , Fungal Proteins/genetics , Mixed Function Oxygenases/genetics , Neurospora crassa/genetics , Nuclear Magnetic Resonance, Biomolecular , Substrate Specificity
7.
Science ; 352(6289): 1098-101, 2016 May 27.
Article En | MEDLINE | ID: mdl-27127235

Ninety percent of lignocellulose-degrading fungi contain genes encoding lytic polysaccharide monooxygenases (LPMOs). These enzymes catalyze the initial oxidative cleavage of recalcitrant polysaccharides after activation by an electron donor. Understanding the source of electrons is fundamental to fungal physiology and will also help with the exploitation of LPMOs for biomass processing. Using genome data and biochemical methods, we characterized and compared different extracellular electron sources for LPMOs: cellobiose dehydrogenase, phenols procured from plant biomass or produced by fungi, and glucose-methanol-choline oxidoreductases that regenerate LPMO-reducing diphenols. Our data demonstrate that all three of these electron transfer systems are functional and that their relative importance during cellulose degradation depends on fungal lifestyle. The availability of extracellular electron donors is required to activate fungal oxidative attack on polysaccharides.


Fungal Proteins/chemistry , Fungi/enzymology , Lignin/chemistry , Mixed Function Oxygenases/chemistry , Biocatalysis , Electron Transport , Fungal Proteins/genetics , Fungi/genetics , Genome, Fungal , Mixed Function Oxygenases/genetics , Oxidation-Reduction
8.
FEBS Lett ; 589(11): 1194-9, 2015 May 08.
Article En | MEDLINE | ID: mdl-25862501

Cellobiose dehydrogenase (CDH) from wood degrading fungi represents a subclass of oxidoreductases with unique properties. Consisting of two domains exhibiting interdomain electron transfer, this is the only known flavocytochrome involved in wood degradation. High resolution structures of the separated domains were solved, but the overall architecture of the intact protein and the exact interface of the two domains is unknown. Recently, it was shown that divalent cations modulate the activity of CDH and its pH optimum and a possible mechanism involving bridging of negative charges by calcium ions was proposed. Here we provide a structural explanation of this phenomenon confirming the interaction between negatively charged surface patches and calcium ions at the domain interface.


Calcium/chemistry , Carbohydrate Dehydrogenases/chemistry , Fungal Proteins/chemistry , Sordariales/enzymology , Electron Transport/physiology , Protein Structure, Tertiary , Structure-Activity Relationship
9.
J Diabetes Sci Technol ; 7(3): 669-77, 2013 May 01.
Article En | MEDLINE | ID: mdl-23759400

OBJECTIVE: Electrochemical sensors for glucose monitoring employ different signal transduction strategies for electron transfer from the biorecognition element to the electrode surface. We present a biosensor that employs direct electron transfer and evaluate its response to various interfering substances known to affect glucose biosensors. METHODS: The enzyme cellobiose dehydrogenase (CDH) was adsorbed on the surface of a carbon working electrode and covalently bound by cross linking. The response of CDH-modified electrodes to glucose and possible interfering compounds was measured by flow-injection analysis, linear sweep, and chronoamperometry. RESULTS: Chronoamperometry showed initial swelling/wetting of the electrode. After stabilization, the signal was stable and a sensitivity of 0.21 µA mM-1 cm-2 was obtained. To investigate the influence of the interfering substances on the biorecognition element, the simplest possible sensor architecture was used. The biosensor showed little (<5% signal deviation) or no response to various reported electroactive or otherwise interfering substances. CONCLUSIONS: Direct electron transfer from the biorecognition element to the electrode is a new principle applied to glucose biosensors, which can be operated at a low polarization potential of -100 mV versus silver/silver chloride. The reduction of interferences by electrochemically active substances is an attractive feature of this promising technology for the development of continuous glucose biosensors.


Biosensing Techniques/instrumentation , Glucose/analysis , Carbohydrate Dehydrogenases , Electrochemistry , Electrodes , Electrons , Enzymes, Immobilized , Substrate Specificity
10.
Biotechnol J ; 7(11): 1359-66, 2012 Nov.
Article En | MEDLINE | ID: mdl-22815189

Cellobiose dehydrogenase (CDH) is an emerging enzyme in the field of bioelectrocatalysis. Due to its flexible cytochrome domain, which acts as a built-in redox mediator, CDH is capable of direct electron transfer (DET) to electrode surfaces. This rare property is employed in mediatorless "third generation" biosensors. The ability of Corynascus thermophilus CDH to oxidize glucose under physiological conditions makes it a promising candidate for miniaturized glucose biosensors or glucose powered biofuel cell anodes. We report for the first time the electrochemical application and characterization of a recombinantly produced CDH in a glucose biosensor. Recombinant CDH from C. thermophilus (rCtCDH) was expressed by the methylotrophic yeast Pichia pastoris (376 U L(-1) , 132 mg L(-1) ). A comparative characterization of rCtCDH and CtCDH shows identical pH optima, K(M) values and heme b midpoint potentials. In contrast, the specific activity of rCtCDH (2.84 U mg(-1) ) and consequently the turnover numbers were ~five-times lower than for CtCDH, which was caused by a sub-stoichiometric occupation of catalytic sites with flavin-adenin-dinukleotid (FAD). The performance of rCtCDH-modified electrodes demonstrates the suitability for electrochemical studies. This opens the possibility to engineer the substrate specificity of C. thermophilus CDH for specific carbohydrates by rational engineering or directed evolution.


Bioelectric Energy Sources , Biosensing Techniques/methods , Carbohydrate Dehydrogenases/biosynthesis , Glucose/metabolism , Recombinant Proteins/biosynthesis , Sordariales/enzymology , Carbohydrate Dehydrogenases/chemistry , Carbohydrate Dehydrogenases/genetics , Cellobiose/metabolism , Electrodes , Fermentation , Glucose/chemistry , Kinetics , Molecular Weight , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sordariales/genetics
11.
Appl Environ Microbiol ; 78(17): 6161-71, 2012 Sep.
Article En | MEDLINE | ID: mdl-22729546

The genome of Neurospora crassa encodes two different cellobiose dehydrogenases (CDHs) with a sequence identity of only 53%. So far, only CDH IIA, which is induced during growth on cellulose and features a C-terminal carbohydrate binding module (CBM), was detected in the secretome of N. crassa and preliminarily characterized. CDH IIB is not significantly upregulated during growth on cellulosic material and lacks a CBM. Since CDH IIB could not be identified in the secretome, both CDHs were recombinantly produced in Pichia pastoris. With the cytochrome domain-dependent one-electron acceptor cytochrome c, CDH IIA has a narrower and more acidic pH optimum than CDH IIB. Interestingly, the catalytic efficiencies of both CDHs for carbohydrates are rather similar, but CDH IIA exhibits 4- to 5-times-higher apparent catalytic constants (k(cat) and K(m) values) than CDH IIB for most tested carbohydrates. A third major difference is the 65-mV-lower redox potential of the heme b cofactor in the cytochrome domain of CDH IIA than CDH IIB. To study the interaction with a member of the glycoside hydrolase 61 family, the copper-dependent polysaccharide monooxygenase GH61-3 (NCU02916) from N. crassa was expressed in P. pastoris. A pH-dependent electron transfer from both CDHs via their cytochrome domains to GH61-3 was observed. The different properties of CDH IIA and CDH IIB and their effect on interactions with GH61-3 are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.


Carbohydrate Dehydrogenases/metabolism , Cellulose/metabolism , Neurospora crassa/enzymology , Neurospora crassa/metabolism , Carbohydrate Dehydrogenases/chemistry , Carbohydrate Dehydrogenases/genetics , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Neurospora crassa/genetics , Oxidation-Reduction , Pichia/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
...